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Infinite alphabets 

L

? LEARNER

1 S,E  {✏}
2 repeat
3 while (S,E) is not closed or not consistent
4 if (S,E) is not closed
5 find s1 2 S, a 2 A such that

row(s1a) 6= row(s), for all s 2 S
6 S  S [ {s1a}
7 if (S,E) is not consistent
8 find s1, s2 2 S, a 2 A, and e 2 E such that

row(s1) = row(s2) and L(s1ae) 6= L(s2ae)
9 E  E [ {ae}

10 Make the conjecture M(S,E)

11 if the Teacher replies no, with a counter-example t
12 S  S [ prefixes(t)
13 until the Teacher replies yes to the conjecture M(S,E).
14 return M(S,E)

Figure 1. Angluin’s algorithm for deterministic finite automata [3]

2. Overview of the approach
In this section, we give an overview of the work developed in the
paper through examples. We will start by explaining the original
algorithm for regular languages over finite alphabets, and then
explain the challenges in extending it to nominal languages.

Angluin’s algorithm L

? provides a procedure to learn the minimal
DFA accepting a certain (unknown) language L. The algorithm has
access to a teacher which answers two types of queries:
• membership queries, consisting of a single word w 2 A?, to

which the teacher will reply whether w 2 L or not;
• equivalence queries, consisting of a hypothesis DFA H , to

which the teacher replies yes if L(H) = L, and no otherwise,
providing a counterexample w 2 L(H)4L (4 denotes the
symmetric difference of two languages).

The learning algorithm works by incrementally building an observa-
tion table, which at each stage contains partial information about the
language L. The algorithm is able to fill the table with membership
queries. As an example, and to set notation, consider the following
table (over A = {a, b}).

E

✏ a aa

S
[

S·A

2

4
✏ 0 0 1

a 0 1 0

b 0 0 0

S,E ✓ A?

row : S [ S·A! 2

E

row(u)(v) = 1 () uv 2 L

This table indicates that L contains at least aa and definitely
does not contain the words ✏, a, b, ba, baa, aaa. Since row is fully
determined by the language L, we will from now on refer to an
observation table as a pair (S,E), leaving the language L implicit.

Given an observation table (S,E) one can construct a determin-
istic automaton M(S,E) = (Q, q0, �, F ) where
• Q = {row(s) | s 2 S} is a finite set of states;
• F = {row(s) | s 2 S, row(s)(✏) = 1} ✓ Q is the set of final

states;
• q0 = row(✏) is the initial state;
• � : Q ⇥ A ! Q is the transition function given by
�(row(s), a) = row(sa).

For this to be well-defined, we need to have ✏ 2 S (for the initial
state) and ✏ 2 E (for final states), and for the transition function

there are two crucial properties of the table that need to hold:
closedness and consistency. An observation table (S,E) is closed if
for all t 2 S·A there exists an s 2 S such that row(t) = row(s).
An observation table (S,E) is consistent if, whenever s1 and s2
are elements of S such that row(s1) = row(s2), for all a 2 A,
row(s1a) = row(s2a). Each time the algorithm constructs an
automaton, it poses an equivalence query to the teacher. It terminates
when the answer is yes, otherwise it extends the table with the
counterexample provided.

2.1 Simple example of execution
Angluin’s algorithm is displayed in Figure 1. Throughout this
section, we will consider the language(s)

Ln = {ww | w 2 A?, |w| = n}
If the alphabet A is finite then Ln is regular for any n 2 N, and
there is a finite DFA accepting it.

The language L1 = {aa, bb} looks trivial, but the minimal DFA
recognizing it has as many as 5 states. Angluin’s algorithm will
terminate in (at most) 5 steps. We illustrate some relevant ones.

Step 1. We start from S,E = {✏}, and we fill the entries of the
table below by asking membership queries for ✏, a and b. The table
is closed and consistent, so we construct the hypothesis A1.

✏

✏ 0

a 0

b 0

A1 =

q0 a/b

q0 = row(✏) = {✏ 7! 0}

The Teacher replies no and gives the counterexample aa, which is in
L1 but it is not accepted by A1. Therefore, line 12 of the algorithm
is triggered and we set S  S [ {a, aa}.

Step 2. The table becomes the one on the left below. It is closed,
but not consistent: rows ✏ and a are identical, but appending a leads
to different rows, as depicted. Therefore, line 9 is triggered and an
extra column a, highlighted in red, is added. The new table is closed
and consistent and a new hypothesis A2 is constructed.

✏
✏ 0

a 0

aa 1

b 0

ab 0

aaa 0

aab 0

✏ a
✏ 0 0

a 0 1

aa 1 0

b 0 0

ab 0 0

aaa 0 0

aab 0 0

A2 =

q0 q1

q2

b

a

a

a

a

The Teacher again replies no and gives the counterexample bb,
which should be accepted by A2 but it is not. Therefore we put
S  S [ {b, bb}.

Step 3. The new table is the one on the left. It is closed, but ✏ and
b violate consistency, when b is appended. Therefore we add the
column b and we get the table on the right, which is closed and
consistent. The new hypothesis is A3.

2 2016/8/31

A infinite

L1 = {aa, bb, cc, dd, . . .}

✏ a
✏ 0 0

a 0 1

aa 1 0

b 0 0

bb 1 0

ab 0 0

aaa 0 0

aab 0 0

ba 0 0

bba 0 0

bbb 0 0

✏ a b
✏ 0 0 0

a 0 1 0

aa 1 0 0

b 0 0 1

bb 1 0 0

ab 0 0 0

aaa 0 0 0

aab 0 0 0

ba 0 0 0

bba 0 0 0

bbb 0 0 0

A3 =

q0 q1

q2 q3

a

b

a

b

a

b

a/b

b

b

The Teacher replies no and provides the counterexample babb, so
S  S [ {ba, bab}.

Step 4. One more step brings us to the correct hypothesis A4

(details are omitted).

A4 =

q0

q1

q2

q3 q4
a

a

b

b

b

a, b

a

a, b

2.2 Learning nominal languages
Consider now an infinite alphabet A = {a, b, c, d, . . . }. The
language L1 becomes {aa, bb, cc, dd, . . . }. Classical theory of
finite automata does not apply to this kind of languages, but one
may draw an infinite deterministic automaton that recognizes L1 in
the standard sense:

A5 =

q0

qa

qb q3 q4

...

a

a

b

b

6= a

A

6= b

A

where A�! and 6=a��! stand for the infinitely-many transitions labelled
by elements of A and A \ {a}, respectively. This automaton is
infinite, but it can be finitely presented in a variety of ways, for
example:

q0 qx q3 q4

8x2A

x x A

6= x

A (1)

One can formalize the quantifier notation above (or indeed the
“dots” notation above that) in several ways. A popular solution is
to consider finite register automata [18, 25], i.e., finite automata
equipped with a finite number of registers where alphabet letters
can be stored and later compared for equality. Our language L1 is
recognized by a simple automaton with four states and one register.
The problem of learning registered automata has been successfully
attacked before [21].

In this paper, however, we will consider nominal automata [9]
instead. These automata ostensibly have infinitely many states, but
the set of states can be finitely presented in a way open to effective
manipulation. More specifically, in a nominal automaton the set of
states is subject to an action of permutations of a set A of atoms, and
it is finite up to that action. For example, the set of states of A5 is:

{q0, q3, q4} [ {qa | a 2 A}

and it is equipped with a canonical action of permutations ⇡ : A!
A that maps every qa to q⇡a , and leaves q0, q3 and q4 fixed. Techni-
cally speaking, the set of states has four orbits (one infinite orbit and
three fixed points) of the action of the group of permutations of A.
Moreover, it is required that in a nominal automaton the transition
relation is equivariant, i.e., closed under the action of permutations.
The automaton A5 has this property: for example, it has a transi-
tion qa

a�! q3, and for any ⇡ : A ! A there is also a transition
⇡(qa) = q⇡(a)

⇡(a)�! q3 = ⇡(q3).
Nominal automata with finitely many orbits of states are equi-

expressive with finite register automata [9], but they have an im-
portant theoretical advantage: they are a direct reformulation of
the classical notion of finite automaton, where one replaces finite
sets with orbit-finite sets and functions (or relations) with equivari-
ant ones. A research programme advocated in [8, 9] is to transport
various computation models, algorithms and theorems along this
correspondence. This can often be done with remarkable accuracy,
and our paper is a witness to this. Indeed, as we shall see, nominal
automata can be learned with an algorithm that is almost a verbatim
copy of the classical Angluin’s one.

Indeed, consider applying Angluin’s algorithm to our new lan-
guage L1. The key idea is to change the basic data structure: our
observation table (S,E) will be such that S and E are equivari-
ant subsets of A?, i.e., they are closed under the canonical action
of atom permutations. In general, such a table has infinitely many
rows and columns, so the following aspects of the algorithm seem
problematic:
line 3: closedness and consistency tests range over infinite sets;
line 5 and 8: finding witnesses for closedness or consistency viola-

tions potentially require checking all infinitely many rows;
line 12: every counterexample t has only finitely many prefixes, so

it is not clear how one would construct an infinite set S in finite
time. However, an infinite S is necessary for the algorithm to
ever succeed, because no finite automaton recognizes L1.

At this stage, we need to observe that due to equivariance of S, E
and L1, the following crucial properties hold:
(P1) the sets S, S·A and E admit a finite representation up to

permutations;
(P2) the function row is such that row(⇡(s))(⇡(e)) = row(s)(e),

for all s 2 S and e 2 E, so the observation table admits a finite
symbolic representation.

Intuitively, checking closedness and consistency, and finding a wit-
ness for their violations, can be done effectively on the represen-
tations up to permutations (P1). This is sound, as row is invariant
w.r.t. permutations (P2).

We now illustrate these points through a few steps of the
algorithm for L1.

Step 1

0
: We start from S,E = {✏}. We have S·A = A, which

is infinite but admits a finite representation. In fact, for any a 2
A, we have A = {⇡(a) | ⇡ is a permutation}. Then, by (P2),
row(⇡(a))(✏) = row(a)(✏) = 0, for all ⇡, so the first table can be
written as:

✏
✏ 0

a 0

A0
1 =

q0
A

It is closed and consistent. Our hypothesis is A0
1, where

�A0
1
(row(✏), x) = row(x) = q0, for all x 2 A. As in Step 1,

the Teacher replies with the counterexample aa.

Step 2

0
. By equivariance of L1, the counterexample tells us that all

words of length 2 with two repeated letters are accepted. Therefore

3 2016/8/31
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This table indicates that L contains at least aa and definitely
does not contain the words ✏, a, b, ba, baa, aaa. Since row is fully
determined by the language L, we will from now on refer to an
observation table as a pair (S,E), leaving the language L implicit.

Given an observation table (S,E) one can construct a determin-
istic automaton M(S,E) = (Q, q0, �, F ) where
• Q = {row(s) | s 2 S} is a finite set of states;
• F = {row(s) | s 2 S, row(s)(✏) = 1} ✓ Q is the set of final

states;
• q0 = row(✏) is the initial state;
• � : Q ⇥ A ! Q is the transition function given by
�(row(s), a) = row(sa).

For this to be well-defined, we need to have ✏ 2 S (for the initial
state) and ✏ 2 E (for final states), and for the transition function

there are two crucial properties of the table that need to hold:
closedness and consistency. An observation table (S,E) is closed if
for all t 2 S·A there exists an s 2 S such that row(t) = row(s).
An observation table (S,E) is consistent if, whenever s1 and s2
are elements of S such that row(s1) = row(s2), for all a 2 A,
row(s1a) = row(s2a). Each time the algorithm constructs an
automaton, it poses an equivalence query to the teacher. It terminates
when the answer is yes, otherwise it extends the table with the
counterexample provided.

2.1 Simple example of execution
Angluin’s algorithm is displayed in Figure 1. Throughout this
section, we will consider the language(s)

Ln = {ww | w 2 A?, |w| = n}
If the alphabet A is finite then Ln is regular for any n 2 N, and
there is a finite DFA accepting it.

The language L1 = {aa, bb} looks trivial, but the minimal DFA
recognizing it has as many as 5 states. Angluin’s algorithm will
terminate in (at most) 5 steps. We illustrate some relevant ones.

Step 1. We start from S,E = {✏}, and we fill the entries of the
table below by asking membership queries for ✏, a and b. The table
is closed and consistent, so we construct the hypothesis A1.

✏

✏ 0

a 0

b 0

A1 =

q0 a/b

q0 = row(✏) = {✏ 7! 0}

The Teacher replies no and gives the counterexample aa, which is in
L1 but it is not accepted by A1. Therefore, line 12 of the algorithm
is triggered and we set S  S [ {a, aa}.

Step 2. The table becomes the one on the left below. It is closed,
but not consistent: rows ✏ and a are identical, but appending a leads
to different rows, as depicted. Therefore, line 9 is triggered and an
extra column a, highlighted in red, is added. The new table is closed
and consistent and a new hypothesis A2 is constructed.

✏
✏ 0

a 0

aa 1

b 0

ab 0

aaa 0

aab 0

✏ a
✏ 0 0

a 0 1

aa 1 0

b 0 0

ab 0 0

aaa 0 0

aab 0 0

A2 =

q0 q1

q2

b

a

a

a

a

The Teacher again replies no and gives the counterexample bb,
which should be accepted by A2 but it is not. Therefore we put
S  S [ {b, bb}.

Step 3. The new table is the one on the left. It is closed, but ✏ and
b violate consistency, when b is appended. Therefore we add the
column b and we get the table on the right, which is closed and
consistent. The new hypothesis is A3.

2 2016/8/31

A infinite

L1 = {aa, bb, cc, dd, . . .}

✏ a
✏ 0 0

a 0 1

aa 1 0

b 0 0

bb 1 0

ab 0 0

aaa 0 0

aab 0 0

ba 0 0

bba 0 0

bbb 0 0

✏ a b
✏ 0 0 0

a 0 1 0

aa 1 0 0

b 0 0 1

bb 1 0 0

ab 0 0 0

aaa 0 0 0

aab 0 0 0

ba 0 0 0

bba 0 0 0

bbb 0 0 0

A3 =

q0 q1

q2 q3

a

b

a

b

a

b

a/b

b

b

The Teacher replies no and provides the counterexample babb, so
S  S [ {ba, bab}.

Step 4. One more step brings us to the correct hypothesis A4

(details are omitted).

A4 =

q0

q1

q2

q3 q4
a

a

b

b

b

a, b

a

a, b

2.2 Learning nominal languages
Consider now an infinite alphabet A = {a, b, c, d, . . . }. The
language L1 becomes {aa, bb, cc, dd, . . . }. Classical theory of
finite automata does not apply to this kind of languages, but one
may draw an infinite deterministic automaton that recognizes L1 in
the standard sense:

A5 =

q0

qa

qb q3 q4

...

a

a

b

b

6= a

A

6= b

A

where A�! and 6=a��! stand for the infinitely-many transitions labelled
by elements of A and A \ {a}, respectively. This automaton is
infinite, but it can be finitely presented in a variety of ways, for
example:

q0 qx q3 q4

8x2A

x x A

6= x

A (1)

One can formalize the quantifier notation above (or indeed the
“dots” notation above that) in several ways. A popular solution is
to consider finite register automata [18, 25], i.e., finite automata
equipped with a finite number of registers where alphabet letters
can be stored and later compared for equality. Our language L1 is
recognized by a simple automaton with four states and one register.
The problem of learning registered automata has been successfully
attacked before [21].

In this paper, however, we will consider nominal automata [9]
instead. These automata ostensibly have infinitely many states, but
the set of states can be finitely presented in a way open to effective
manipulation. More specifically, in a nominal automaton the set of
states is subject to an action of permutations of a set A of atoms, and
it is finite up to that action. For example, the set of states of A5 is:

{q0, q3, q4} [ {qa | a 2 A}

and it is equipped with a canonical action of permutations ⇡ : A!
A that maps every qa to q⇡a , and leaves q0, q3 and q4 fixed. Techni-
cally speaking, the set of states has four orbits (one infinite orbit and
three fixed points) of the action of the group of permutations of A.
Moreover, it is required that in a nominal automaton the transition
relation is equivariant, i.e., closed under the action of permutations.
The automaton A5 has this property: for example, it has a transi-
tion qa

a�! q3, and for any ⇡ : A ! A there is also a transition
⇡(qa) = q⇡(a)

⇡(a)�! q3 = ⇡(q3).
Nominal automata with finitely many orbits of states are equi-

expressive with finite register automata [9], but they have an im-
portant theoretical advantage: they are a direct reformulation of
the classical notion of finite automaton, where one replaces finite
sets with orbit-finite sets and functions (or relations) with equivari-
ant ones. A research programme advocated in [8, 9] is to transport
various computation models, algorithms and theorems along this
correspondence. This can often be done with remarkable accuracy,
and our paper is a witness to this. Indeed, as we shall see, nominal
automata can be learned with an algorithm that is almost a verbatim
copy of the classical Angluin’s one.

Indeed, consider applying Angluin’s algorithm to our new lan-
guage L1. The key idea is to change the basic data structure: our
observation table (S,E) will be such that S and E are equivari-
ant subsets of A?, i.e., they are closed under the canonical action
of atom permutations. In general, such a table has infinitely many
rows and columns, so the following aspects of the algorithm seem
problematic:
line 3: closedness and consistency tests range over infinite sets;
line 5 and 8: finding witnesses for closedness or consistency viola-

tions potentially require checking all infinitely many rows;
line 12: every counterexample t has only finitely many prefixes, so

it is not clear how one would construct an infinite set S in finite
time. However, an infinite S is necessary for the algorithm to
ever succeed, because no finite automaton recognizes L1.

At this stage, we need to observe that due to equivariance of S, E
and L1, the following crucial properties hold:
(P1) the sets S, S·A and E admit a finite representation up to

permutations;
(P2) the function row is such that row(⇡(s))(⇡(e)) = row(s)(e),

for all s 2 S and e 2 E, so the observation table admits a finite
symbolic representation.

Intuitively, checking closedness and consistency, and finding a wit-
ness for their violations, can be done effectively on the represen-
tations up to permutations (P1). This is sound, as row is invariant
w.r.t. permutations (P2).

We now illustrate these points through a few steps of the
algorithm for L1.

Step 1

0
: We start from S,E = {✏}. We have S·A = A, which

is infinite but admits a finite representation. In fact, for any a 2
A, we have A = {⇡(a) | ⇡ is a permutation}. Then, by (P2),
row(⇡(a))(✏) = row(a)(✏) = 0, for all ⇡, so the first table can be
written as:

✏
✏ 0

a 0

A0
1 =

q0
A

It is closed and consistent. Our hypothesis is A0
1, where

�A0
1
(row(✏), x) = row(x) = q0, for all x 2 A. As in Step 1,

the Teacher replies with the counterexample aa.

Step 2

0
. By equivariance of L1, the counterexample tells us that all

words of length 2 with two repeated letters are accepted. Therefore
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infinite automaton

✏ a
✏ 0 0

a 0 1

aa 1 0

b 0 0

bb 1 0

ab 0 0

aaa 0 0

aab 0 0

ba 0 0

bba 0 0

bbb 0 0

✏ a b
✏ 0 0 0

a 0 1 0

aa 1 0 0

b 0 0 1

bb 1 0 0

ab 0 0 0

aaa 0 0 0

aab 0 0 0

ba 0 0 0

bba 0 0 0

bbb 0 0 0

A3 =

q0 q1

q2 q3

a

b

a

b

a

b

a/b

b

b
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S  S [ {ba, bab}.

Step 4. One more step brings us to the correct hypothesis A4

(details are omitted).

A4 =

q0

q1

q2

q3 q4
a

a

b

b

b

a, b

a

a, b

2.2 Learning nominal languages
Consider now an infinite alphabet A = {a, b, c, d, . . . }. The
language L1 becomes {aa, bb, cc, dd, . . . }. Classical theory of
finite automata does not apply to this kind of languages, but one
may draw an infinite deterministic automaton that recognizes L1 in
the standard sense:

A5 =

q0

qa

qb q3 q4

...

a

a

b

b

6= a

A

6= b

A

where A�! and 6=a��! stand for the infinitely-many transitions labelled
by elements of A and A \ {a}, respectively. This automaton is
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example:
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One can formalize the quantifier notation above (or indeed the
“dots” notation above that) in several ways. A popular solution is
to consider finite register automata [18, 25], i.e., finite automata
equipped with a finite number of registers where alphabet letters
can be stored and later compared for equality. Our language L1 is
recognized by a simple automaton with four states and one register.
The problem of learning registered automata has been successfully
attacked before [21].

In this paper, however, we will consider nominal automata [9]
instead. These automata ostensibly have infinitely many states, but
the set of states can be finitely presented in a way open to effective
manipulation. More specifically, in a nominal automaton the set of
states is subject to an action of permutations of a set A of atoms, and
it is finite up to that action. For example, the set of states of A5 is:

{q0, q3, q4} [ {qa | a 2 A}

and it is equipped with a canonical action of permutations ⇡ : A!
A that maps every qa to q⇡a , and leaves q0, q3 and q4 fixed. Techni-
cally speaking, the set of states has four orbits (one infinite orbit and
three fixed points) of the action of the group of permutations of A.
Moreover, it is required that in a nominal automaton the transition
relation is equivariant, i.e., closed under the action of permutations.
The automaton A5 has this property: for example, it has a transi-
tion qa

a�! q3, and for any ⇡ : A ! A there is also a transition
⇡(qa) = q⇡(a)

⇡(a)�! q3 = ⇡(q3).
Nominal automata with finitely many orbits of states are equi-

expressive with finite register automata [9], but they have an im-
portant theoretical advantage: they are a direct reformulation of
the classical notion of finite automaton, where one replaces finite
sets with orbit-finite sets and functions (or relations) with equivari-
ant ones. A research programme advocated in [8, 9] is to transport
various computation models, algorithms and theorems along this
correspondence. This can often be done with remarkable accuracy,
and our paper is a witness to this. Indeed, as we shall see, nominal
automata can be learned with an algorithm that is almost a verbatim
copy of the classical Angluin’s one.

Indeed, consider applying Angluin’s algorithm to our new lan-
guage L1. The key idea is to change the basic data structure: our
observation table (S,E) will be such that S and E are equivari-
ant subsets of A?, i.e., they are closed under the canonical action
of atom permutations. In general, such a table has infinitely many
rows and columns, so the following aspects of the algorithm seem
problematic:
line 3: closedness and consistency tests range over infinite sets;
line 5 and 8: finding witnesses for closedness or consistency viola-

tions potentially require checking all infinitely many rows;
line 12: every counterexample t has only finitely many prefixes, so

it is not clear how one would construct an infinite set S in finite
time. However, an infinite S is necessary for the algorithm to
ever succeed, because no finite automaton recognizes L1.

At this stage, we need to observe that due to equivariance of S, E
and L1, the following crucial properties hold:
(P1) the sets S, S·A and E admit a finite representation up to

permutations;
(P2) the function row is such that row(⇡(s))(⇡(e)) = row(s)(e),

for all s 2 S and e 2 E, so the observation table admits a finite
symbolic representation.

Intuitively, checking closedness and consistency, and finding a wit-
ness for their violations, can be done effectively on the represen-
tations up to permutations (P1). This is sound, as row is invariant
w.r.t. permutations (P2).

We now illustrate these points through a few steps of the
algorithm for L1.

Step 1

0
: We start from S,E = {✏}. We have S·A = A, which

is infinite but admits a finite representation. In fact, for any a 2
A, we have A = {⇡(a) | ⇡ is a permutation}. Then, by (P2),
row(⇡(a))(✏) = row(a)(✏) = 0, for all ⇡, so the first table can be
written as:

✏
✏ 0

a 0

A0
1 =

q0
A

It is closed and consistent. Our hypothesis is A0
1, where

�A0
1
(row(✏), x) = row(x) = q0, for all x 2 A. As in Step 1,

the Teacher replies with the counterexample aa.

Step 2

0
. By equivariance of L1, the counterexample tells us that all
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Challenges
L

? LEARNER

1 S,E  {✏}
2 repeat
3 while (S,E) is not closed or not consistent
4 if (S,E) is not closed
5 find s1 2 S, a 2 A such that

row(s1a) 6= row(s), for all s 2 S
6 S  S [ {s1a}
7 if (S,E) is not consistent
8 find s1, s2 2 S, a 2 A, and e 2 E such that

row(s1) = row(s2) and L(s1ae) 6= L(s2ae)
9 E  E [ {ae}

10 Make the conjecture M(S,E)

11 if the Teacher replies no, with a counter-example t
12 S  S [ prefixes(t)
13 until the Teacher replies yes to the conjecture M(S,E).
14 return M(S,E)

Figure 1. Angluin’s algorithm for deterministic finite automata [3]

2. Overview of the approach
In this section, we give an overview of the work developed in the
paper through examples. We will start by explaining the original
algorithm for regular languages over finite alphabets, and then
explain the challenges in extending it to nominal languages.

Angluin’s algorithm L

? provides a procedure to learn the minimal
DFA accepting a certain (unknown) language L. The algorithm has
access to a teacher which answers two types of queries:
• membership queries, consisting of a single word w 2 A?, to

which the teacher will reply whether w 2 L or not;
• equivalence queries, consisting of a hypothesis DFA H , to

which the teacher replies yes if L(H) = L, and no otherwise,
providing a counterexample w 2 L(H)4L (4 denotes the
symmetric difference of two languages).

The learning algorithm works by incrementally building an observa-
tion table, which at each stage contains partial information about the
language L. The algorithm is able to fill the table with membership
queries. As an example, and to set notation, consider the following
table (over A = {a, b}).

E

✏ a aa

S
[

S·A

2

4
✏ 0 0 1

a 0 1 0

b 0 0 0

S,E ✓ A?

row : S [ S·A! 2

E

row(u)(v) = 1 () uv 2 L

This table indicates that L contains at least aa and definitely
does not contain the words ✏, a, b, ba, baa, aaa. Since row is fully
determined by the language L, we will from now on refer to an
observation table as a pair (S,E), leaving the language L implicit.

Given an observation table (S,E) one can construct a determin-
istic automaton M(S,E) = (Q, q0, �, F ) where
• Q = {row(s) | s 2 S} is a finite set of states;
• F = {row(s) | s 2 S, row(s)(✏) = 1} ✓ Q is the set of final

states;
• q0 = row(✏) is the initial state;
• � : Q ⇥ A ! Q is the transition function given by
�(row(s), a) = row(sa).

For this to be well-defined, we need to have ✏ 2 S (for the initial
state) and ✏ 2 E (for final states), and for the transition function

there are two crucial properties of the table that need to hold:
closedness and consistency. An observation table (S,E) is closed if
for all t 2 S·A there exists an s 2 S such that row(t) = row(s).
An observation table (S,E) is consistent if, whenever s1 and s2
are elements of S such that row(s1) = row(s2), for all a 2 A,
row(s1a) = row(s2a). Each time the algorithm constructs an
automaton, it poses an equivalence query to the teacher. It terminates
when the answer is yes, otherwise it extends the table with the
counterexample provided.

2.1 Simple example of execution
Angluin’s algorithm is displayed in Figure 1. Throughout this
section, we will consider the language(s)

Ln = {ww | w 2 A?, |w| = n}
If the alphabet A is finite then Ln is regular for any n 2 N, and
there is a finite DFA accepting it.

The language L1 = {aa, bb} looks trivial, but the minimal DFA
recognizing it has as many as 5 states. Angluin’s algorithm will
terminate in (at most) 5 steps. We illustrate some relevant ones.

Step 1. We start from S,E = {✏}, and we fill the entries of the
table below by asking membership queries for ✏, a and b. The table
is closed and consistent, so we construct the hypothesis A1.

✏

✏ 0

a 0

b 0

A1 =

q0 a/b

q0 = row(✏) = {✏ 7! 0}

The Teacher replies no and gives the counterexample aa, which is in
L1 but it is not accepted by A1. Therefore, line 12 of the algorithm
is triggered and we set S  S [ {a, aa}.

Step 2. The table becomes the one on the left below. It is closed,
but not consistent: rows ✏ and a are identical, but appending a leads
to different rows, as depicted. Therefore, line 9 is triggered and an
extra column a, highlighted in red, is added. The new table is closed
and consistent and a new hypothesis A2 is constructed.

✏
✏ 0

a 0

aa 1

b 0

ab 0

aaa 0

aab 0

✏ a
✏ 0 0

a 0 1

aa 1 0

b 0 0

ab 0 0

aaa 0 0

aab 0 0

A2 =

q0 q1

q2

b

a

a

a

a

The Teacher again replies no and gives the counterexample bb,
which should be accepted by A2 but it is not. Therefore we put
S  S [ {b, bb}.

Step 3. The new table is the one on the left. It is closed, but ✏ and
b violate consistency, when b is appended. Therefore we add the
column b and we get the table on the right, which is closed and
consistent. The new hypothesis is A3.
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1 S,E  {✏}
2 repeat
3 while (S,E) is not closed or not consistent
4 if (S,E) is not closed
5 find s1 2 S, a 2 A such that

row(s1a) 6= row(s), for all s 2 S
6 S  S [ {s1a}
7 if (S,E) is not consistent
8 find s1, s2 2 S, a 2 A, and e 2 E such that

row(s1) = row(s2) and L(s1ae) 6= L(s2ae)
9 E  E [ {ae}

10 Make the conjecture M(S,E)

11 if the Teacher replies no, with a counter-example t
12 S  S [ prefixes(t)
13 until the Teacher replies yes to the conjecture M(S,E).
14 return M(S,E)

Figure 1. Angluin’s algorithm for deterministic finite automata [3]

2. Overview of the approach
In this section, we give an overview of the work developed in the
paper through examples. We will start by explaining the original
algorithm for regular languages over finite alphabets, and then
explain the challenges in extending it to nominal languages.

Angluin’s algorithm L

? provides a procedure to learn the minimal
DFA accepting a certain (unknown) language L. The algorithm has
access to a teacher which answers two types of queries:
• membership queries, consisting of a single word w 2 A?, to

which the teacher will reply whether w 2 L or not;
• equivalence queries, consisting of a hypothesis DFA H , to

which the teacher replies yes if L(H) = L, and no otherwise,
providing a counterexample w 2 L(H)4L (4 denotes the
symmetric difference of two languages).

The learning algorithm works by incrementally building an observa-
tion table, which at each stage contains partial information about the
language L. The algorithm is able to fill the table with membership
queries. As an example, and to set notation, consider the following
table (over A = {a, b}).

E

✏ a aa

S
[

S·A

2

4
✏ 0 0 1

a 0 1 0

b 0 0 0

S,E ✓ A?

row : S [ S·A! 2

E

row(u)(v) = 1 () uv 2 L

This table indicates that L contains at least aa and definitely
does not contain the words ✏, a, b, ba, baa, aaa. Since row is fully
determined by the language L, we will from now on refer to an
observation table as a pair (S,E), leaving the language L implicit.

Given an observation table (S,E) one can construct a determin-
istic automaton M(S,E) = (Q, q0, �, F ) where
• Q = {row(s) | s 2 S} is a finite set of states;
• F = {row(s) | s 2 S, row(s)(✏) = 1} ✓ Q is the set of final

states;
• q0 = row(✏) is the initial state;
• � : Q ⇥ A ! Q is the transition function given by
�(row(s), a) = row(sa).

For this to be well-defined, we need to have ✏ 2 S (for the initial
state) and ✏ 2 E (for final states), and for the transition function

there are two crucial properties of the table that need to hold:
closedness and consistency. An observation table (S,E) is closed if
for all t 2 S·A there exists an s 2 S such that row(t) = row(s).
An observation table (S,E) is consistent if, whenever s1 and s2
are elements of S such that row(s1) = row(s2), for all a 2 A,
row(s1a) = row(s2a). Each time the algorithm constructs an
automaton, it poses an equivalence query to the teacher. It terminates
when the answer is yes, otherwise it extends the table with the
counterexample provided.

2.1 Simple example of execution
Angluin’s algorithm is displayed in Figure 1. Throughout this
section, we will consider the language(s)

Ln = {ww | w 2 A?, |w| = n}
If the alphabet A is finite then Ln is regular for any n 2 N, and
there is a finite DFA accepting it.

The language L1 = {aa, bb} looks trivial, but the minimal DFA
recognizing it has as many as 5 states. Angluin’s algorithm will
terminate in (at most) 5 steps. We illustrate some relevant ones.

Step 1. We start from S,E = {✏}, and we fill the entries of the
table below by asking membership queries for ✏, a and b. The table
is closed and consistent, so we construct the hypothesis A1.

✏

✏ 0

a 0

b 0

A1 =

q0 a/b

q0 = row(✏) = {✏ 7! 0}

The Teacher replies no and gives the counterexample aa, which is in
L1 but it is not accepted by A1. Therefore, line 12 of the algorithm
is triggered and we set S  S [ {a, aa}.

Step 2. The table becomes the one on the left below. It is closed,
but not consistent: rows ✏ and a are identical, but appending a leads
to different rows, as depicted. Therefore, line 9 is triggered and an
extra column a, highlighted in red, is added. The new table is closed
and consistent and a new hypothesis A2 is constructed.

✏
✏ 0

a 0

aa 1

b 0

ab 0

aaa 0

aab 0

✏ a
✏ 0 0

a 0 1

aa 1 0

b 0 0

ab 0 0

aaa 0 0

aab 0 0

A2 =

q0 q1

q2

b

a

a

a

a

The Teacher again replies no and gives the counterexample bb,
which should be accepted by A2 but it is not. Therefore we put
S  S [ {b, bb}.

Step 3. The new table is the one on the left. It is closed, but ✏ and
b violate consistency, when b is appended. Therefore we add the
column b and we get the table on the right, which is closed and
consistent. The new hypothesis is A3.
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1 S,E  {✏}
2 repeat
3 while (S,E) is not closed or not consistent
4 if (S,E) is not closed
5 find s1 2 S, a 2 A such that

row(s1a) 6= row(s), for all s 2 S
6 S  S [ {s1a}
7 if (S,E) is not consistent
8 find s1, s2 2 S, a 2 A, and e 2 E such that

row(s1) = row(s2) and L(s1ae) 6= L(s2ae)
9 E  E [ {ae}

10 Make the conjecture M(S,E)

11 if the Teacher replies no, with a counter-example t
12 S  S [ prefixes(t)
13 until the Teacher replies yes to the conjecture M(S,E).
14 return M(S,E)

Figure 1. Angluin’s algorithm for deterministic finite automata [3]

2. Overview of the approach
In this section, we give an overview of the work developed in the
paper through examples. We will start by explaining the original
algorithm for regular languages over finite alphabets, and then
explain the challenges in extending it to nominal languages.

Angluin’s algorithm L

? provides a procedure to learn the minimal
DFA accepting a certain (unknown) language L. The algorithm has
access to a teacher which answers two types of queries:
• membership queries, consisting of a single word w 2 A?, to

which the teacher will reply whether w 2 L or not;
• equivalence queries, consisting of a hypothesis DFA H , to

which the teacher replies yes if L(H) = L, and no otherwise,
providing a counterexample w 2 L(H)4L (4 denotes the
symmetric difference of two languages).

The learning algorithm works by incrementally building an observa-
tion table, which at each stage contains partial information about the
language L. The algorithm is able to fill the table with membership
queries. As an example, and to set notation, consider the following
table (over A = {a, b}).

E

✏ a aa

S
[

S·A

2

4
✏ 0 0 1

a 0 1 0

b 0 0 0

S,E ✓ A?

row : S [ S·A! 2

E

row(u)(v) = 1 () uv 2 L

This table indicates that L contains at least aa and definitely
does not contain the words ✏, a, b, ba, baa, aaa. Since row is fully
determined by the language L, we will from now on refer to an
observation table as a pair (S,E), leaving the language L implicit.

Given an observation table (S,E) one can construct a determin-
istic automaton M(S,E) = (Q, q0, �, F ) where
• Q = {row(s) | s 2 S} is a finite set of states;
• F = {row(s) | s 2 S, row(s)(✏) = 1} ✓ Q is the set of final

states;
• q0 = row(✏) is the initial state;
• � : Q ⇥ A ! Q is the transition function given by
�(row(s), a) = row(sa).

For this to be well-defined, we need to have ✏ 2 S (for the initial
state) and ✏ 2 E (for final states), and for the transition function

there are two crucial properties of the table that need to hold:
closedness and consistency. An observation table (S,E) is closed if
for all t 2 S·A there exists an s 2 S such that row(t) = row(s).
An observation table (S,E) is consistent if, whenever s1 and s2
are elements of S such that row(s1) = row(s2), for all a 2 A,
row(s1a) = row(s2a). Each time the algorithm constructs an
automaton, it poses an equivalence query to the teacher. It terminates
when the answer is yes, otherwise it extends the table with the
counterexample provided.

2.1 Simple example of execution
Angluin’s algorithm is displayed in Figure 1. Throughout this
section, we will consider the language(s)

Ln = {ww | w 2 A?, |w| = n}
If the alphabet A is finite then Ln is regular for any n 2 N, and
there is a finite DFA accepting it.

The language L1 = {aa, bb} looks trivial, but the minimal DFA
recognizing it has as many as 5 states. Angluin’s algorithm will
terminate in (at most) 5 steps. We illustrate some relevant ones.

Step 1. We start from S,E = {✏}, and we fill the entries of the
table below by asking membership queries for ✏, a and b. The table
is closed and consistent, so we construct the hypothesis A1.

✏

✏ 0

a 0

b 0

A1 =

q0 a/b

q0 = row(✏) = {✏ 7! 0}

The Teacher replies no and gives the counterexample aa, which is in
L1 but it is not accepted by A1. Therefore, line 12 of the algorithm
is triggered and we set S  S [ {a, aa}.

Step 2. The table becomes the one on the left below. It is closed,
but not consistent: rows ✏ and a are identical, but appending a leads
to different rows, as depicted. Therefore, line 9 is triggered and an
extra column a, highlighted in red, is added. The new table is closed
and consistent and a new hypothesis A2 is constructed.

✏
✏ 0

a 0

aa 1

b 0

ab 0

aaa 0

aab 0

✏ a
✏ 0 0

a 0 1

aa 1 0

b 0 0

ab 0 0

aaa 0 0

aab 0 0

A2 =

q0 q1

q2

b

a

a

a

a

The Teacher again replies no and gives the counterexample bb,
which should be accepted by A2 but it is not. Therefore we put
S  S [ {b, bb}.

Step 3. The new table is the one on the left. It is closed, but ✏ and
b violate consistency, when b is appended. Therefore we add the
column b and we get the table on the right, which is closed and
consistent. The new hypothesis is A3.
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1 S,E  {✏}
2 repeat
3 while (S,E) is not closed or not consistent
4 if (S,E) is not closed
5 find s1 2 S, a 2 A such that

row(s1a) 6= row(s), for all s 2 S
6 S  S [ {s1a}
7 if (S,E) is not consistent
8 find s1, s2 2 S, a 2 A, and e 2 E such that

row(s1) = row(s2) and L(s1ae) 6= L(s2ae)
9 E  E [ {ae}

10 Make the conjecture M(S,E)

11 if the Teacher replies no, with a counter-example t
12 S  S [ prefixes(t)
13 until the Teacher replies yes to the conjecture M(S,E).
14 return M(S,E)

Figure 1. Angluin’s algorithm for deterministic finite automata [3]

2. Overview of the approach
In this section, we give an overview of the work developed in the
paper through examples. We will start by explaining the original
algorithm for regular languages over finite alphabets, and then
explain the challenges in extending it to nominal languages.

Angluin’s algorithm L

? provides a procedure to learn the minimal
DFA accepting a certain (unknown) language L. The algorithm has
access to a teacher which answers two types of queries:
• membership queries, consisting of a single word w 2 A?, to

which the teacher will reply whether w 2 L or not;
• equivalence queries, consisting of a hypothesis DFA H , to

which the teacher replies yes if L(H) = L, and no otherwise,
providing a counterexample w 2 L(H)4L (4 denotes the
symmetric difference of two languages).

The learning algorithm works by incrementally building an observa-
tion table, which at each stage contains partial information about the
language L. The algorithm is able to fill the table with membership
queries. As an example, and to set notation, consider the following
table (over A = {a, b}).

E

✏ a aa

S
[

S·A

2

4
✏ 0 0 1

a 0 1 0

b 0 0 0

S,E ✓ A?

row : S [ S·A! 2

E

row(u)(v) = 1 () uv 2 L

This table indicates that L contains at least aa and definitely
does not contain the words ✏, a, b, ba, baa, aaa. Since row is fully
determined by the language L, we will from now on refer to an
observation table as a pair (S,E), leaving the language L implicit.

Given an observation table (S,E) one can construct a determin-
istic automaton M(S,E) = (Q, q0, �, F ) where
• Q = {row(s) | s 2 S} is a finite set of states;
• F = {row(s) | s 2 S, row(s)(✏) = 1} ✓ Q is the set of final

states;
• q0 = row(✏) is the initial state;
• � : Q ⇥ A ! Q is the transition function given by
�(row(s), a) = row(sa).

For this to be well-defined, we need to have ✏ 2 S (for the initial
state) and ✏ 2 E (for final states), and for the transition function

there are two crucial properties of the table that need to hold:
closedness and consistency. An observation table (S,E) is closed if
for all t 2 S·A there exists an s 2 S such that row(t) = row(s).
An observation table (S,E) is consistent if, whenever s1 and s2
are elements of S such that row(s1) = row(s2), for all a 2 A,
row(s1a) = row(s2a). Each time the algorithm constructs an
automaton, it poses an equivalence query to the teacher. It terminates
when the answer is yes, otherwise it extends the table with the
counterexample provided.

2.1 Simple example of execution
Angluin’s algorithm is displayed in Figure 1. Throughout this
section, we will consider the language(s)

Ln = {ww | w 2 A?, |w| = n}
If the alphabet A is finite then Ln is regular for any n 2 N, and
there is a finite DFA accepting it.

The language L1 = {aa, bb} looks trivial, but the minimal DFA
recognizing it has as many as 5 states. Angluin’s algorithm will
terminate in (at most) 5 steps. We illustrate some relevant ones.

Step 1. We start from S,E = {✏}, and we fill the entries of the
table below by asking membership queries for ✏, a and b. The table
is closed and consistent, so we construct the hypothesis A1.

✏

✏ 0

a 0

b 0

A1 =

q0 a/b

q0 = row(✏) = {✏ 7! 0}

The Teacher replies no and gives the counterexample aa, which is in
L1 but it is not accepted by A1. Therefore, line 12 of the algorithm
is triggered and we set S  S [ {a, aa}.

Step 2. The table becomes the one on the left below. It is closed,
but not consistent: rows ✏ and a are identical, but appending a leads
to different rows, as depicted. Therefore, line 9 is triggered and an
extra column a, highlighted in red, is added. The new table is closed
and consistent and a new hypothesis A2 is constructed.

✏
✏ 0

a 0

aa 1

b 0

ab 0

aaa 0

aab 0

✏ a
✏ 0 0

a 0 1

aa 1 0

b 0 0

ab 0 0

aaa 0 0

aab 0 0

A2 =

q0 q1

q2

b

a

a

a

a

The Teacher again replies no and gives the counterexample bb,
which should be accepted by A2 but it is not. Therefore we put
S  S [ {b, bb}.

Step 3. The new table is the one on the left. It is closed, but ✏ and
b violate consistency, when b is appended. Therefore we add the
column b and we get the table on the right, which is closed and
consistent. The new hypothesis is A3.
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1 S,E  {✏}
2 repeat
3 while (S,E) is not closed or not consistent
4 if (S,E) is not closed
5 find s1 2 S, a 2 A such that

row(s1a) 6= row(s), for all s 2 S
6 S  S [ {s1a}
7 if (S,E) is not consistent
8 find s1, s2 2 S, a 2 A, and e 2 E such that

row(s1) = row(s2) and L(s1ae) 6= L(s2ae)
9 E  E [ {ae}

10 Make the conjecture M(S,E)

11 if the Teacher replies no, with a counter-example t
12 S  S [ prefixes(t)
13 until the Teacher replies yes to the conjecture M(S,E).
14 return M(S,E)

Figure 1. Angluin’s algorithm for deterministic finite automata [3]

2. Overview of the approach
In this section, we give an overview of the work developed in the
paper through examples. We will start by explaining the original
algorithm for regular languages over finite alphabets, and then
explain the challenges in extending it to nominal languages.

Angluin’s algorithm L

? provides a procedure to learn the minimal
DFA accepting a certain (unknown) language L. The algorithm has
access to a teacher which answers two types of queries:
• membership queries, consisting of a single word w 2 A?, to

which the teacher will reply whether w 2 L or not;
• equivalence queries, consisting of a hypothesis DFA H , to

which the teacher replies yes if L(H) = L, and no otherwise,
providing a counterexample w 2 L(H)4L (4 denotes the
symmetric difference of two languages).

The learning algorithm works by incrementally building an observa-
tion table, which at each stage contains partial information about the
language L. The algorithm is able to fill the table with membership
queries. As an example, and to set notation, consider the following
table (over A = {a, b}).

E

✏ a aa

S
[

S·A

2

4
✏ 0 0 1

a 0 1 0

b 0 0 0

S,E ✓ A?

row : S [ S·A! 2

E

row(u)(v) = 1 () uv 2 L

This table indicates that L contains at least aa and definitely
does not contain the words ✏, a, b, ba, baa, aaa. Since row is fully
determined by the language L, we will from now on refer to an
observation table as a pair (S,E), leaving the language L implicit.

Given an observation table (S,E) one can construct a determin-
istic automaton M(S,E) = (Q, q0, �, F ) where
• Q = {row(s) | s 2 S} is a finite set of states;
• F = {row(s) | s 2 S, row(s)(✏) = 1} ✓ Q is the set of final

states;
• q0 = row(✏) is the initial state;
• � : Q ⇥ A ! Q is the transition function given by
�(row(s), a) = row(sa).

For this to be well-defined, we need to have ✏ 2 S (for the initial
state) and ✏ 2 E (for final states), and for the transition function

there are two crucial properties of the table that need to hold:
closedness and consistency. An observation table (S,E) is closed if
for all t 2 S·A there exists an s 2 S such that row(t) = row(s).
An observation table (S,E) is consistent if, whenever s1 and s2
are elements of S such that row(s1) = row(s2), for all a 2 A,
row(s1a) = row(s2a). Each time the algorithm constructs an
automaton, it poses an equivalence query to the teacher. It terminates
when the answer is yes, otherwise it extends the table with the
counterexample provided.

2.1 Simple example of execution
Angluin’s algorithm is displayed in Figure 1. Throughout this
section, we will consider the language(s)

Ln = {ww | w 2 A?, |w| = n}
If the alphabet A is finite then Ln is regular for any n 2 N, and
there is a finite DFA accepting it.

The language L1 = {aa, bb} looks trivial, but the minimal DFA
recognizing it has as many as 5 states. Angluin’s algorithm will
terminate in (at most) 5 steps. We illustrate some relevant ones.

Step 1. We start from S,E = {✏}, and we fill the entries of the
table below by asking membership queries for ✏, a and b. The table
is closed and consistent, so we construct the hypothesis A1.

✏

✏ 0

a 0

b 0

A1 =

q0 a/b

q0 = row(✏) = {✏ 7! 0}

The Teacher replies no and gives the counterexample aa, which is in
L1 but it is not accepted by A1. Therefore, line 12 of the algorithm
is triggered and we set S  S [ {a, aa}.

Step 2. The table becomes the one on the left below. It is closed,
but not consistent: rows ✏ and a are identical, but appending a leads
to different rows, as depicted. Therefore, line 9 is triggered and an
extra column a, highlighted in red, is added. The new table is closed
and consistent and a new hypothesis A2 is constructed.

✏
✏ 0

a 0

aa 1

b 0

ab 0

aaa 0

aab 0

✏ a
✏ 0 0

a 0 1

aa 1 0

b 0 0

ab 0 0

aaa 0 0

aab 0 0

A2 =

q0 q1

q2

b

a

a

a

a

The Teacher again replies no and gives the counterexample bb,
which should be accepted by A2 but it is not. Therefore we put
S  S [ {b, bb}.

Step 3. The new table is the one on the left. It is closed, but ✏ and
b violate consistency, when b is appended. Therefore we add the
column b and we get the table on the right, which is closed and
consistent. The new hypothesis is A3.
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3 while (S,E) is not closed or not consistent
4 if (S,E) is not closed
5 find s1 2 S, a 2 A such that

row(s1a) 6= row(s), for all s 2 S
6 S  S [ {s1a}
7 if (S,E) is not consistent
8 find s1, s2 2 S, a 2 A, and e 2 E such that

row(s1) = row(s2) and L(s1ae) 6= L(s2ae)
9 E  E [ {ae}

10 Make the conjecture M(S,E)

11 if the Teacher replies no, with a counter-example t
12 S  S [ prefixes(t)
13 until the Teacher replies yes to the conjecture M(S,E).
14 return M(S,E)

Figure 1. Angluin’s algorithm for deterministic finite automata [3]

2. Overview of the approach
In this section, we give an overview of the work developed in the
paper through examples. We will start by explaining the original
algorithm for regular languages over finite alphabets, and then
explain the challenges in extending it to nominal languages.

Angluin’s algorithm L

? provides a procedure to learn the minimal
DFA accepting a certain (unknown) language L. The algorithm has
access to a teacher which answers two types of queries:
• membership queries, consisting of a single word w 2 A?, to

which the teacher will reply whether w 2 L or not;
• equivalence queries, consisting of a hypothesis DFA H , to

which the teacher replies yes if L(H) = L, and no otherwise,
providing a counterexample w 2 L(H)4L (4 denotes the
symmetric difference of two languages).

The learning algorithm works by incrementally building an observa-
tion table, which at each stage contains partial information about the
language L. The algorithm is able to fill the table with membership
queries. As an example, and to set notation, consider the following
table (over A = {a, b}).
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✏ a aa

S
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S·A

2

4
✏ 0 0 1

a 0 1 0

b 0 0 0

S,E ✓ A?

row : S [ S·A! 2

E

row(u)(v) = 1 () uv 2 L

This table indicates that L contains at least aa and definitely
does not contain the words ✏, a, b, ba, baa, aaa. Since row is fully
determined by the language L, we will from now on refer to an
observation table as a pair (S,E), leaving the language L implicit.

Given an observation table (S,E) one can construct a determin-
istic automaton M(S,E) = (Q, q0, �, F ) where
• Q = {row(s) | s 2 S} is a finite set of states;
• F = {row(s) | s 2 S, row(s)(✏) = 1} ✓ Q is the set of final

states;
• q0 = row(✏) is the initial state;
• � : Q ⇥ A ! Q is the transition function given by
�(row(s), a) = row(sa).

For this to be well-defined, we need to have ✏ 2 S (for the initial
state) and ✏ 2 E (for final states), and for the transition function

there are two crucial properties of the table that need to hold:
closedness and consistency. An observation table (S,E) is closed if
for all t 2 S·A there exists an s 2 S such that row(t) = row(s).
An observation table (S,E) is consistent if, whenever s1 and s2
are elements of S such that row(s1) = row(s2), for all a 2 A,
row(s1a) = row(s2a). Each time the algorithm constructs an
automaton, it poses an equivalence query to the teacher. It terminates
when the answer is yes, otherwise it extends the table with the
counterexample provided.

2.1 Simple example of execution
Angluin’s algorithm is displayed in Figure 1. Throughout this
section, we will consider the language(s)

Ln = {ww | w 2 A?, |w| = n}
If the alphabet A is finite then Ln is regular for any n 2 N, and
there is a finite DFA accepting it.

The language L1 = {aa, bb} looks trivial, but the minimal DFA
recognizing it has as many as 5 states. Angluin’s algorithm will
terminate in (at most) 5 steps. We illustrate some relevant ones.

Step 1. We start from S,E = {✏}, and we fill the entries of the
table below by asking membership queries for ✏, a and b. The table
is closed and consistent, so we construct the hypothesis A1.

✏

✏ 0

a 0

b 0

A1 =

q0 a/b

q0 = row(✏) = {✏ 7! 0}

The Teacher replies no and gives the counterexample aa, which is in
L1 but it is not accepted by A1. Therefore, line 12 of the algorithm
is triggered and we set S  S [ {a, aa}.

Step 2. The table becomes the one on the left below. It is closed,
but not consistent: rows ✏ and a are identical, but appending a leads
to different rows, as depicted. Therefore, line 9 is triggered and an
extra column a, highlighted in red, is added. The new table is closed
and consistent and a new hypothesis A2 is constructed.

✏
✏ 0

a 0

aa 1

b 0

ab 0

aaa 0

aab 0

✏ a
✏ 0 0

a 0 1

aa 1 0

b 0 0

ab 0 0

aaa 0 0

aab 0 0

A2 =

q0 q1

q2

b

a

a

a

a

The Teacher again replies no and gives the counterexample bb,
which should be accepted by A2 but it is not. Therefore we put
S  S [ {b, bb}.

Step 3. The new table is the one on the left. It is closed, but ✏ and
b violate consistency, when b is appended. Therefore we add the
column b and we get the table on the right, which is closed and
consistent. The new hypothesis is A3.
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Nominal L*

Equivariance here can be rephrased as requiring �(⇡ · q,⇡ · a) =
⇡ · �(q, a). In most examples we take the alphabet to be A = A, but
it can be any orbit-finite nominal set. For instance, A = Act⇥ A,
where Act is a finite set of actions, represents actions act(x) with
one parameter x 2 A (actions with arity n can be represented via
n-fold products of A).

A language L is nominal regular if it is recognized by a
nominal DFA. The theory of nominal regular languages recasts
the classical one using nominal concepts. A nominal Myhill-Nerode-
style syntactic congruence is defined: w,w0 2 A? are equivalent
w.r.t. L, written w ⌘L w0, whenever

wv 2 L () w0v 2 L
for all v 2 A?. This relation is equivariant and the set of equivalence
classes [w]L is a nominal set.

Theorem 1 (Myhill-Nerode theorem for nominal sets [9]). Let
L be a regular nominal language. The following conditions are
equivalent:
1. the set of equivalence classes of ⌘L is orbit-finite;
2. L is recognized by a nominal DFA.

Unlike what happens for ordinary regular languages, nominal
NFAs and nominal DFAs are not equi-expressive. Here is an example
of a language accepted by a nominal NFA, but not by a nominal
DFA:

Leq = {a1 . . . an | ai = aj , for some i < j 2 {1, . . . , n}}
In the theory of nominal regular languages, several problems are

decidable: language inclusion and minimality test for nominal DFAs.
Moreover, orbit-finite nominal sets can be finitely-represented,
and so can be manipulated by algorithms. This is the key idea
underpinning our implementation.

3.1 Different atom symmetries
An important advantage of nominal set theory as considered in [9]
is that it retains most of its properties when the structure of atoms A
is replaced with an arbitrary infinite relational structure subject to a
few model-theoretic assumptions. An example alternative structure
of atoms is the total order of rational numbers (Q, <), with the
group of monotone bijections of Q taking the role of the group of
all permutations. The theory of nominal automata remains similar,
and an example nominal language over the atoms (Q, <) is:

{a1 . . . an | ai  aj , for some i < j 2 {1, . . . , n}}
which is recognized by a nominal DFA over those atoms.

To simplify the presentation, in this paper we concentrate on the
“equality atoms” only. Also our implementation of nominal learning
algorithms is restricted to equality atoms. However, both the theory
and the implementation can be generalized to other atom structures,
with the “ordered atoms” (Q, <) as the simplest other example. We
leave the details of this for a future extended version of this paper.

4. Angluin’s algorithm for nominal DFAs
In our algorithm, we will assume a teacher as described at the start
of Section 2. In particular, the teacher is able to answer membership
queries and equivalence queries, now in the setting of nominal
languages. We fix a target language L, which is assumed to be a
nominal regular language.

The learning algorithm for nominal automata, ⌫L?, will be very
similar to L

? in Figure 1. In fact, we only change the following lines:
6

0 S  S [ orb(sa)
9

0 E  E [ orb(ae)
12

0 E  E [ prefixes(orb(t))
(2)

The basic data structure is an observation table (S,E, T ) where S
and E are orbit-finite subsets of A? and T : S [ S·A ⇥ E ! 2

is an equivariant function defined by T (se) = L(se) for each
s 2 S [ S·A and e 2 E. Since T is determined by L we omit it
from the notation. Let row : S [ S·A ! 2

E denote the curried
counterpart of T . Let u ⇠ v denote the relation row(u) = row(v).

Definition 1. The table is called closed if for each t 2 S·A there is
a s 2 S with t ⇠ s. The table is called consistent if for each pair
s1, s2 2 S with s1 ⇠ s2 we have s1a ⇠ s2a for all a 2 A.

The above definitions agree with the abstract definitions given in
[24] and we may use some of their results implicitly. The intuition
behind the definitions is as follows. Closedness assures us that for
each state we have a successor state for each input. Consistency
assures us that each state has at most one successor for each input.
Together it allows us to construct a well-defined minimal automaton
from the observations in the table.

The algorithm starts with a trivial observation table and tries to
make it closed and consistent by adding orbits of rows and columns,
filling the table via membership queries. When the table is closed
and consistent it constructs a hypothesis automaton and poses an
equivalence query.

The pseudocode for the nominal version is the same as listed in
Figure 1, modulo the changes displayed in (2). However, we have to
take care to ensure that all manipulations and tests on the (possibly)
infinite sets S,E and A terminate in finite time. We refer to [9]
and [35] for the full details on how to represent these structures
and provide a brief sketch here. The sets S,E,A and S·A can be
represented by choosing a representative for each orbit. The function
T in turn can be represented by cells Ti,j : orb(si)⇥ orb(ej)! 2

for each representative si and ej . Note, however, that the product
of two orbits may consist of several orbits, so that Ti,j is not a
single boolean value. Each cell is still orbit-finite and can be filled
with only finitely many membership queries. Similarly the curried
function row can be represented by a finite structure.

To check whether the table is closed, we observe that if we have
a corresponding row s 2 S for some t 2 S·A, this holds for any
permutation of t. Hence it is enough to check the following: for
all representatives t 2 S·A there is a representative s 2 S with
row(t) = ⇡ · row(s) for some permutation ⇡. Note that we only
have to consider finitely many permutations, since the support is
finite and so we can decide this property. Furthermore if the property
does not hold, we immediately find a witness represented by t.

Consistency can be checked in a similar way. In this case
the table is consistent if for all representatives s1, s2 2 S with
row(s1) = ⇡·row(s2) for some ⇡ we have row(t1) = ⇡0 ·row(t2)
for all representatives t1 2 orb(s1)·A, t2 2 orb(s2)·A and some
suitable ⇡0. If the property does not hold, one of the cells in the table
will give us a discrepancy which is represented by a sequence.

Constructing the hypothesis happens in the same way as before
(Section 2), where we note the state space is orbit-finite since it is
a quotient of S. Moreover the function row is equivariant, so all
structure (Q0, F and �) is equivariant as well.

The representation given above is not the only way to represent
nominal sets. For example, first-order definable sets can be used as
well [26]. From now on we assume to have set theoretic primitives
so that each line in Figure 1 is well defined.

4.1 Correctness
To prove correctness we only have to prove that the algorithm
terminates, that is, only finitely many hypotheses will be produced.
Correctness follows trivially from termination since the last step
of the algorithm is an equivalence query to the teacher inquiring
whether an hypothesis automaton accepts the target language. We
start out by listing some facts about observation tables.
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Equivariance here can be rephrased as requiring �(⇡ · q,⇡ · a) =
⇡ · �(q, a). In most examples we take the alphabet to be A = A, but
it can be any orbit-finite nominal set. For instance, A = Act⇥ A,
where Act is a finite set of actions, represents actions act(x) with
one parameter x 2 A (actions with arity n can be represented via
n-fold products of A).

A language L is nominal regular if it is recognized by a
nominal DFA. The theory of nominal regular languages recasts
the classical one using nominal concepts. A nominal Myhill-Nerode-
style syntactic congruence is defined: w,w0 2 A? are equivalent
w.r.t. L, written w ⌘L w0, whenever

wv 2 L () w0v 2 L
for all v 2 A?. This relation is equivariant and the set of equivalence
classes [w]L is a nominal set.

Theorem 1 (Myhill-Nerode theorem for nominal sets [9]). Let
L be a regular nominal language. The following conditions are
equivalent:
1. the set of equivalence classes of ⌘L is orbit-finite;
2. L is recognized by a nominal DFA.

Unlike what happens for ordinary regular languages, nominal
NFAs and nominal DFAs are not equi-expressive. Here is an example
of a language accepted by a nominal NFA, but not by a nominal
DFA:

Leq = {a1 . . . an | ai = aj , for some i < j 2 {1, . . . , n}}
In the theory of nominal regular languages, several problems are

decidable: language inclusion and minimality test for nominal DFAs.
Moreover, orbit-finite nominal sets can be finitely-represented,
and so can be manipulated by algorithms. This is the key idea
underpinning our implementation.

3.1 Different atom symmetries
An important advantage of nominal set theory as considered in [9]
is that it retains most of its properties when the structure of atoms A
is replaced with an arbitrary infinite relational structure subject to a
few model-theoretic assumptions. An example alternative structure
of atoms is the total order of rational numbers (Q, <), with the
group of monotone bijections of Q taking the role of the group of
all permutations. The theory of nominal automata remains similar,
and an example nominal language over the atoms (Q, <) is:

{a1 . . . an | ai  aj , for some i < j 2 {1, . . . , n}}
which is recognized by a nominal DFA over those atoms.

To simplify the presentation, in this paper we concentrate on the
“equality atoms” only. Also our implementation of nominal learning
algorithms is restricted to equality atoms. However, both the theory
and the implementation can be generalized to other atom structures,
with the “ordered atoms” (Q, <) as the simplest other example. We
leave the details of this for a future extended version of this paper.

4. Angluin’s algorithm for nominal DFAs
In our algorithm, we will assume a teacher as described at the start
of Section 2. In particular, the teacher is able to answer membership
queries and equivalence queries, now in the setting of nominal
languages. We fix a target language L, which is assumed to be a
nominal regular language.

The learning algorithm for nominal automata, ⌫L?, will be very
similar to L

? in Figure 1. In fact, we only change the following lines:
6

0 S  S [ orb(sa)
9

0 E  E [ orb(ae)
12

0 E  E [ prefixes(orb(t))
(2)

The basic data structure is an observation table (S,E, T ) where S
and E are orbit-finite subsets of A? and T : S [ S·A ⇥ E ! 2

is an equivariant function defined by T (se) = L(se) for each
s 2 S [ S·A and e 2 E. Since T is determined by L we omit it
from the notation. Let row : S [ S·A ! 2

E denote the curried
counterpart of T . Let u ⇠ v denote the relation row(u) = row(v).

Definition 1. The table is called closed if for each t 2 S·A there is
a s 2 S with t ⇠ s. The table is called consistent if for each pair
s1, s2 2 S with s1 ⇠ s2 we have s1a ⇠ s2a for all a 2 A.

The above definitions agree with the abstract definitions given in
[24] and we may use some of their results implicitly. The intuition
behind the definitions is as follows. Closedness assures us that for
each state we have a successor state for each input. Consistency
assures us that each state has at most one successor for each input.
Together it allows us to construct a well-defined minimal automaton
from the observations in the table.

The algorithm starts with a trivial observation table and tries to
make it closed and consistent by adding orbits of rows and columns,
filling the table via membership queries. When the table is closed
and consistent it constructs a hypothesis automaton and poses an
equivalence query.

The pseudocode for the nominal version is the same as listed in
Figure 1, modulo the changes displayed in (2). However, we have to
take care to ensure that all manipulations and tests on the (possibly)
infinite sets S,E and A terminate in finite time. We refer to [9]
and [35] for the full details on how to represent these structures
and provide a brief sketch here. The sets S,E,A and S·A can be
represented by choosing a representative for each orbit. The function
T in turn can be represented by cells Ti,j : orb(si)⇥ orb(ej)! 2

for each representative si and ej . Note, however, that the product
of two orbits may consist of several orbits, so that Ti,j is not a
single boolean value. Each cell is still orbit-finite and can be filled
with only finitely many membership queries. Similarly the curried
function row can be represented by a finite structure.

To check whether the table is closed, we observe that if we have
a corresponding row s 2 S for some t 2 S·A, this holds for any
permutation of t. Hence it is enough to check the following: for
all representatives t 2 S·A there is a representative s 2 S with
row(t) = ⇡ · row(s) for some permutation ⇡. Note that we only
have to consider finitely many permutations, since the support is
finite and so we can decide this property. Furthermore if the property
does not hold, we immediately find a witness represented by t.

Consistency can be checked in a similar way. In this case
the table is consistent if for all representatives s1, s2 2 S with
row(s1) = ⇡·row(s2) for some ⇡ we have row(t1) = ⇡0 ·row(t2)
for all representatives t1 2 orb(s1)·A, t2 2 orb(s2)·A and some
suitable ⇡0. If the property does not hold, one of the cells in the table
will give us a discrepancy which is represented by a sequence.

Constructing the hypothesis happens in the same way as before
(Section 2), where we note the state space is orbit-finite since it is
a quotient of S. Moreover the function row is equivariant, so all
structure (Q0, F and �) is equivariant as well.

The representation given above is not the only way to represent
nominal sets. For example, first-order definable sets can be used as
well [26]. From now on we assume to have set theoretic primitives
so that each line in Figure 1 is well defined.

4.1 Correctness
To prove correctness we only have to prove that the algorithm
terminates, that is, only finitely many hypotheses will be produced.
Correctness follows trivially from termination since the last step
of the algorithm is an equivalence query to the teacher inquiring
whether an hypothesis automaton accepts the target language. We
start out by listing some facts about observation tables.
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Equivariance here can be rephrased as requiring �(⇡ · q,⇡ · a) =
⇡ · �(q, a). In most examples we take the alphabet to be A = A, but
it can be any orbit-finite nominal set. For instance, A = Act⇥ A,
where Act is a finite set of actions, represents actions act(x) with
one parameter x 2 A (actions with arity n can be represented via
n-fold products of A).

A language L is nominal regular if it is recognized by a
nominal DFA. The theory of nominal regular languages recasts
the classical one using nominal concepts. A nominal Myhill-Nerode-
style syntactic congruence is defined: w,w0 2 A? are equivalent
w.r.t. L, written w ⌘L w0, whenever

wv 2 L () w0v 2 L
for all v 2 A?. This relation is equivariant and the set of equivalence
classes [w]L is a nominal set.

Theorem 1 (Myhill-Nerode theorem for nominal sets [9]). Let
L be a regular nominal language. The following conditions are
equivalent:
1. the set of equivalence classes of ⌘L is orbit-finite;
2. L is recognized by a nominal DFA.

Unlike what happens for ordinary regular languages, nominal
NFAs and nominal DFAs are not equi-expressive. Here is an example
of a language accepted by a nominal NFA, but not by a nominal
DFA:

Leq = {a1 . . . an | ai = aj , for some i < j 2 {1, . . . , n}}
In the theory of nominal regular languages, several problems are

decidable: language inclusion and minimality test for nominal DFAs.
Moreover, orbit-finite nominal sets can be finitely-represented,
and so can be manipulated by algorithms. This is the key idea
underpinning our implementation.

3.1 Different atom symmetries
An important advantage of nominal set theory as considered in [9]
is that it retains most of its properties when the structure of atoms A
is replaced with an arbitrary infinite relational structure subject to a
few model-theoretic assumptions. An example alternative structure
of atoms is the total order of rational numbers (Q, <), with the
group of monotone bijections of Q taking the role of the group of
all permutations. The theory of nominal automata remains similar,
and an example nominal language over the atoms (Q, <) is:

{a1 . . . an | ai  aj , for some i < j 2 {1, . . . , n}}
which is recognized by a nominal DFA over those atoms.

To simplify the presentation, in this paper we concentrate on the
“equality atoms” only. Also our implementation of nominal learning
algorithms is restricted to equality atoms. However, both the theory
and the implementation can be generalized to other atom structures,
with the “ordered atoms” (Q, <) as the simplest other example. We
leave the details of this for a future extended version of this paper.

4. Angluin’s algorithm for nominal DFAs
In our algorithm, we will assume a teacher as described at the start
of Section 2. In particular, the teacher is able to answer membership
queries and equivalence queries, now in the setting of nominal
languages. We fix a target language L, which is assumed to be a
nominal regular language.

The learning algorithm for nominal automata, ⌫L?, will be very
similar to L

? in Figure 1. In fact, we only change the following lines:
6

0 S  S [ orb(sa)
9

0 E  E [ orb(ae)
12

0 E  E [ prefixes(orb(t))
(2)

The basic data structure is an observation table (S,E, T ) where S
and E are orbit-finite subsets of A? and T : S [ S·A ⇥ E ! 2

is an equivariant function defined by T (se) = L(se) for each
s 2 S [ S·A and e 2 E. Since T is determined by L we omit it
from the notation. Let row : S [ S·A ! 2

E denote the curried
counterpart of T . Let u ⇠ v denote the relation row(u) = row(v).

Definition 1. The table is called closed if for each t 2 S·A there is
a s 2 S with t ⇠ s. The table is called consistent if for each pair
s1, s2 2 S with s1 ⇠ s2 we have s1a ⇠ s2a for all a 2 A.

The above definitions agree with the abstract definitions given in
[24] and we may use some of their results implicitly. The intuition
behind the definitions is as follows. Closedness assures us that for
each state we have a successor state for each input. Consistency
assures us that each state has at most one successor for each input.
Together it allows us to construct a well-defined minimal automaton
from the observations in the table.

The algorithm starts with a trivial observation table and tries to
make it closed and consistent by adding orbits of rows and columns,
filling the table via membership queries. When the table is closed
and consistent it constructs a hypothesis automaton and poses an
equivalence query.

The pseudocode for the nominal version is the same as listed in
Figure 1, modulo the changes displayed in (2). However, we have to
take care to ensure that all manipulations and tests on the (possibly)
infinite sets S,E and A terminate in finite time. We refer to [9]
and [35] for the full details on how to represent these structures
and provide a brief sketch here. The sets S,E,A and S·A can be
represented by choosing a representative for each orbit. The function
T in turn can be represented by cells Ti,j : orb(si)⇥ orb(ej)! 2

for each representative si and ej . Note, however, that the product
of two orbits may consist of several orbits, so that Ti,j is not a
single boolean value. Each cell is still orbit-finite and can be filled
with only finitely many membership queries. Similarly the curried
function row can be represented by a finite structure.

To check whether the table is closed, we observe that if we have
a corresponding row s 2 S for some t 2 S·A, this holds for any
permutation of t. Hence it is enough to check the following: for
all representatives t 2 S·A there is a representative s 2 S with
row(t) = ⇡ · row(s) for some permutation ⇡. Note that we only
have to consider finitely many permutations, since the support is
finite and so we can decide this property. Furthermore if the property
does not hold, we immediately find a witness represented by t.

Consistency can be checked in a similar way. In this case
the table is consistent if for all representatives s1, s2 2 S with
row(s1) = ⇡·row(s2) for some ⇡ we have row(t1) = ⇡0 ·row(t2)
for all representatives t1 2 orb(s1)·A, t2 2 orb(s2)·A and some
suitable ⇡0. If the property does not hold, one of the cells in the table
will give us a discrepancy which is represented by a sequence.

Constructing the hypothesis happens in the same way as before
(Section 2), where we note the state space is orbit-finite since it is
a quotient of S. Moreover the function row is equivariant, so all
structure (Q0, F and �) is equivariant as well.

The representation given above is not the only way to represent
nominal sets. For example, first-order definable sets can be used as
well [26]. From now on we assume to have set theoretic primitives
so that each line in Figure 1 is well defined.

4.1 Correctness
To prove correctness we only have to prove that the algorithm
terminates, that is, only finitely many hypotheses will be produced.
Correctness follows trivially from termination since the last step
of the algorithm is an equivalence query to the teacher inquiring
whether an hypothesis automaton accepts the target language. We
start out by listing some facts about observation tables.

5 2016/8/31

only 3 lines changed! 

not really… all definitions have to be adapted  
to nominal/equivariant.

Correctness, termination, … have to be re-proved!



Nominal L*

Equivariance here can be rephrased as requiring �(⇡ · q,⇡ · a) =
⇡ · �(q, a). In most examples we take the alphabet to be A = A, but
it can be any orbit-finite nominal set. For instance, A = Act⇥ A,
where Act is a finite set of actions, represents actions act(x) with
one parameter x 2 A (actions with arity n can be represented via
n-fold products of A).

A language L is nominal regular if it is recognized by a
nominal DFA. The theory of nominal regular languages recasts
the classical one using nominal concepts. A nominal Myhill-Nerode-
style syntactic congruence is defined: w,w0 2 A? are equivalent
w.r.t. L, written w ⌘L w0, whenever
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for all v 2 A?. This relation is equivariant and the set of equivalence
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Theorem 1 (Myhill-Nerode theorem for nominal sets [9]). Let
L be a regular nominal language. The following conditions are
equivalent:
1. the set of equivalence classes of ⌘L is orbit-finite;
2. L is recognized by a nominal DFA.
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NFAs and nominal DFAs are not equi-expressive. Here is an example
of a language accepted by a nominal NFA, but not by a nominal
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Moreover, orbit-finite nominal sets can be finitely-represented,
and so can be manipulated by algorithms. This is the key idea
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is that it retains most of its properties when the structure of atoms A
is replaced with an arbitrary infinite relational structure subject to a
few model-theoretic assumptions. An example alternative structure
of atoms is the total order of rational numbers (Q, <), with the
group of monotone bijections of Q taking the role of the group of
all permutations. The theory of nominal automata remains similar,
and an example nominal language over the atoms (Q, <) is:

{a1 . . . an | ai  aj , for some i < j 2 {1, . . . , n}}
which is recognized by a nominal DFA over those atoms.

To simplify the presentation, in this paper we concentrate on the
“equality atoms” only. Also our implementation of nominal learning
algorithms is restricted to equality atoms. However, both the theory
and the implementation can be generalized to other atom structures,
with the “ordered atoms” (Q, <) as the simplest other example. We
leave the details of this for a future extended version of this paper.

4. Angluin’s algorithm for nominal DFAs
In our algorithm, we will assume a teacher as described at the start
of Section 2. In particular, the teacher is able to answer membership
queries and equivalence queries, now in the setting of nominal
languages. We fix a target language L, which is assumed to be a
nominal regular language.

The learning algorithm for nominal automata, ⌫L?, will be very
similar to L

? in Figure 1. In fact, we only change the following lines:
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(2)

The basic data structure is an observation table (S,E, T ) where S
and E are orbit-finite subsets of A? and T : S [ S·A ⇥ E ! 2

is an equivariant function defined by T (se) = L(se) for each
s 2 S [ S·A and e 2 E. Since T is determined by L we omit it
from the notation. Let row : S [ S·A ! 2

E denote the curried
counterpart of T . Let u ⇠ v denote the relation row(u) = row(v).

Definition 1. The table is called closed if for each t 2 S·A there is
a s 2 S with t ⇠ s. The table is called consistent if for each pair
s1, s2 2 S with s1 ⇠ s2 we have s1a ⇠ s2a for all a 2 A.

The above definitions agree with the abstract definitions given in
[24] and we may use some of their results implicitly. The intuition
behind the definitions is as follows. Closedness assures us that for
each state we have a successor state for each input. Consistency
assures us that each state has at most one successor for each input.
Together it allows us to construct a well-defined minimal automaton
from the observations in the table.

The algorithm starts with a trivial observation table and tries to
make it closed and consistent by adding orbits of rows and columns,
filling the table via membership queries. When the table is closed
and consistent it constructs a hypothesis automaton and poses an
equivalence query.

The pseudocode for the nominal version is the same as listed in
Figure 1, modulo the changes displayed in (2). However, we have to
take care to ensure that all manipulations and tests on the (possibly)
infinite sets S,E and A terminate in finite time. We refer to [9]
and [35] for the full details on how to represent these structures
and provide a brief sketch here. The sets S,E,A and S·A can be
represented by choosing a representative for each orbit. The function
T in turn can be represented by cells Ti,j : orb(si)⇥ orb(ej)! 2

for each representative si and ej . Note, however, that the product
of two orbits may consist of several orbits, so that Ti,j is not a
single boolean value. Each cell is still orbit-finite and can be filled
with only finitely many membership queries. Similarly the curried
function row can be represented by a finite structure.

To check whether the table is closed, we observe that if we have
a corresponding row s 2 S for some t 2 S·A, this holds for any
permutation of t. Hence it is enough to check the following: for
all representatives t 2 S·A there is a representative s 2 S with
row(t) = ⇡ · row(s) for some permutation ⇡. Note that we only
have to consider finitely many permutations, since the support is
finite and so we can decide this property. Furthermore if the property
does not hold, we immediately find a witness represented by t.

Consistency can be checked in a similar way. In this case
the table is consistent if for all representatives s1, s2 2 S with
row(s1) = ⇡·row(s2) for some ⇡ we have row(t1) = ⇡0 ·row(t2)
for all representatives t1 2 orb(s1)·A, t2 2 orb(s2)·A and some
suitable ⇡0. If the property does not hold, one of the cells in the table
will give us a discrepancy which is represented by a sequence.

Constructing the hypothesis happens in the same way as before
(Section 2), where we note the state space is orbit-finite since it is
a quotient of S. Moreover the function row is equivariant, so all
structure (Q0, F and �) is equivariant as well.

The representation given above is not the only way to represent
nominal sets. For example, first-order definable sets can be used as
well [26]. From now on we assume to have set theoretic primitives
so that each line in Figure 1 is well defined.

4.1 Correctness
To prove correctness we only have to prove that the algorithm
terminates, that is, only finitely many hypotheses will be produced.
Correctness follows trivially from termination since the last step
of the algorithm is an equivalence query to the teacher inquiring
whether an hypothesis automaton accepts the target language. We
start out by listing some facts about observation tables.
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only 3 lines changed! 

not really… all definitions have to be adapted  
to nominal/equivariant.

Correctness, termination, … have to be re-proved!
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property stating that for all s
1

, s
2

œ S such that ›(s
1

) = ›(s
2

) we must have L(s
1

) = L(s
2

).
The Lı algorithm ensures this by having Á œ E, using that L(s) = ›(s)(Á) for any s œ S.

4 A General Correctness Theorem

In this section we work towards a general correctness theorem. We then show how it applies
to the ID algorithm, to the algorithm by Arbib and Zeiger and to Lı.

S T

H P

‡

e fi
„

m

S H

T P

e

‡ m
Â

fi

(3)

The key observation for the correctness theorem
is the following. Let w = (S ‡≠æ T, T

fi≠æ P ) be
a wrapper with minimization (S e≠æ H, H

m≠æ P ).
If ‡ œ E , then the factorization system gives us a
unique diagonal „ in the left square of (3), which by (the dual of) Proposition ?? satisfies
„ œ E . Similarly, if fi œ M, we have Â in the right square of (3), with Â œ M. Composing the
two diagrams and using again the diagonal property, one sees that „ and Â must be mutually
inverse. We can conclude that H and T are isomorphic. Now, if w is a wrapper produced
by a learning algorithm and T is the state space of the target minimal automaton, as in
Example 2, our reasoning hints at a correctness criterion: ‡ œ E and fi œ M upon termination
ensure that H is (isomorphic to) T . Of course, the criterion will have to guarantee that the
automata, not just the state spaces, are isomorphic.

We first show that the argument above lifts to F -algebras f : FT æ T , for an arbitrary
endofunctor F : C æ C preserving E .

I Lemma 11. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E, then w is f -closed; if
fi œ M, then w is f-consistent.

Proof. If ‡ œ E , then let „ be as in (3) and define closef = „ ¶ f ¶ F‡; if fi œ M, then let Â
be as in (3) and define consf = fi ¶ f ¶ FÂ. J

I Proposition 12. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E and w is f-
consistent, then „ as given in (3) is an F -algebra homomorphism (T, f) æ (H, ◊f ); if fi œ M
and w is f-closed, then Â as given in (3) is an F -algebra homomorphism (H, ◊f ) æ (T, f).
Proof. Assume that ‡ œ E and w is FT T H

FS P

FT FH H

f „

fi m
›f

F ‡ F e closef

F ‡ 1

2

F „

3

4

5

◊f

m

1 definition of ›f

2 (3)
3 functoriality, (3)
4 definition of ◊f

5 closedness

f -consistent. The proof for the other
part is analogous. Using Lemma 11 we
see that ◊f indeed exists. Because F‡
is epic and m monic, it su�ces to show
m¶„¶f ¶F‡ = m¶◊f ¶F„¶F‡, which
is done on the right. (The definition of
◊f can be found in the proof of Proposition 9.) J

I Corollary 13. If ‡ œ E and fi œ M, then „ as given in (3) is an F -algebra isomorphism
(T, f) æ (H, ◊f ).

Now we enrich F -algebras with initial and final states, obtaining a notion of automaton in a
category. Then we give the full correctness theorem for automata. We fix objects I and Y in
C, which will serve as initial state selector and output of the automaton, respectively.
I Definition 14 (Automaton). An automaton in C is an object Q FQ

Q

I Y

”Q

outQinitQ

of C equipped with an initial state map initQ : I æ Q, an output
map outQ : Q æ Y , and dynamics ”Q : FQ æ Q. An input system
is an automaton without an output map; an output system is an
automaton without an initial state map.
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ensure that H is (isomorphic to) T . Of course, the criterion will have to guarantee that the
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We first show that the argument above lifts to F -algebras f : FT æ T , for an arbitrary
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fi œ M, then w is f-consistent.

Proof. If ‡ œ E , then let „ be as in (3) and define closef = „ ¶ f ¶ F‡; if fi œ M, then let Â
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Now we enrich F -algebras with initial and final states, obtaining a notion of automaton in a
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two diagrams and using again the diagonal property, one sees that „ and Â must be mutually
inverse. We can conclude that H and T are isomorphic. Now, if w is a wrapper produced
by a learning algorithm and T is the state space of the target minimal automaton, as in
Example 2, our reasoning hints at a correctness criterion: ‡ œ E and fi œ M upon termination
ensure that H is (isomorphic to) T . Of course, the criterion will have to guarantee that the
automata, not just the state spaces, are isomorphic.

We first show that the argument above lifts to F -algebras f : FT æ T , for an arbitrary
endofunctor F : C æ C preserving E .

I Lemma 11. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E, then w is f -closed; if
fi œ M, then w is f-consistent.

Proof. If ‡ œ E , then let „ be as in (3) and define closef = „ ¶ f ¶ F‡; if fi œ M, then let Â
be as in (3) and define consf = fi ¶ f ¶ FÂ. J

I Proposition 12. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E and w is f-
consistent, then „ as given in (3) is an F -algebra homomorphism (T, f) æ (H, ◊f ); if fi œ M
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part is analogous. Using Lemma 11 we
see that ◊f indeed exists. Because F‡
is epic and m monic, it su�ces to show
m¶„¶f ¶F‡ = m¶◊f ¶F„¶F‡, which
is done on the right. (The definition of
◊f can be found in the proof of Proposition 9.) J

I Corollary 13. If ‡ œ E and fi œ M, then „ as given in (3) is an F -algebra isomorphism
(T, f) æ (H, ◊f ).

Now we enrich F -algebras with initial and final states, obtaining a notion of automaton in a
category. Then we give the full correctness theorem for automata. We fix objects I and Y in
C, which will serve as initial state selector and output of the automaton, respectively.
I Definition 14 (Automaton). An automaton in C is an object Q FQ
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outQinitQ

of C equipped with an initial state map initQ : I æ Q, an output
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I Proposition 12. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E and w is f-
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is an automaton without an output map; an output system is an
automaton without an initial state map.

Target minimal automaton



Abstract learning

Abstract observation data 
structure

approximates

Gerco van Heerdt, Matteo Sammartino, and Alexandra Silva 7

property stating that for all s
1

, s
2

œ S such that ›(s
1

) = ›(s
2

) we must have L(s
1

) = L(s
2

).
The Lı algorithm ensures this by having Á œ E, using that L(s) = ›(s)(Á) for any s œ S.

4 A General Correctness Theorem

In this section we work towards a general correctness theorem. We then show how it applies
to the ID algorithm, to the algorithm by Arbib and Zeiger and to Lı.
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is the following. Let w = (S ‡≠æ T, T

fi≠æ P ) be
a wrapper with minimization (S e≠æ H, H

m≠æ P ).
If ‡ œ E , then the factorization system gives us a
unique diagonal „ in the left square of (3), which by (the dual of) Proposition ?? satisfies
„ œ E . Similarly, if fi œ M, we have Â in the right square of (3), with Â œ M. Composing the
two diagrams and using again the diagonal property, one sees that „ and Â must be mutually
inverse. We can conclude that H and T are isomorphic. Now, if w is a wrapper produced
by a learning algorithm and T is the state space of the target minimal automaton, as in
Example 2, our reasoning hints at a correctness criterion: ‡ œ E and fi œ M upon termination
ensure that H is (isomorphic to) T . Of course, the criterion will have to guarantee that the
automata, not just the state spaces, are isomorphic.

We first show that the argument above lifts to F -algebras f : FT æ T , for an arbitrary
endofunctor F : C æ C preserving E .

I Lemma 11. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E, then w is f -closed; if
fi œ M, then w is f-consistent.

Proof. If ‡ œ E , then let „ be as in (3) and define closef = „ ¶ f ¶ F‡; if fi œ M, then let Â
be as in (3) and define consf = fi ¶ f ¶ FÂ. J

I Proposition 12. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E and w is f-
consistent, then „ as given in (3) is an F -algebra homomorphism (T, f) æ (H, ◊f ); if fi œ M
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f -consistent. The proof for the other
part is analogous. Using Lemma 11 we
see that ◊f indeed exists. Because F‡
is epic and m monic, it su�ces to show
m¶„¶f ¶F‡ = m¶◊f ¶F„¶F‡, which
is done on the right. (The definition of
◊f can be found in the proof of Proposition 9.) J

I Corollary 13. If ‡ œ E and fi œ M, then „ as given in (3) is an F -algebra isomorphism
(T, f) æ (H, ◊f ).

Now we enrich F -algebras with initial and final states, obtaining a notion of automaton in a
category. Then we give the full correctness theorem for automata. We fix objects I and Y in
C, which will serve as initial state selector and output of the automaton, respectively.
I Definition 14 (Automaton). An automaton in C is an object Q FQ

Q

I Y

”Q

outQinitQ

of C equipped with an initial state map initQ : I æ Q, an output
map outQ : Q æ Y , and dynamics ”Q : FQ æ Q. An input system
is an automaton without an output map; an output system is an
automaton without an initial state map.
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◊f can be found in the proof of Proposition 9.) J
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I Definition 14 (Automaton). An automaton in C is an object Q FQ

Q

I Y

”Q

outQinitQ

of C equipped with an initial state map initQ : I æ Q, an output
map outQ : Q æ Y , and dynamics ”Q : FQ æ Q. An input system
is an automaton without an output map; an output system is an
automaton without an initial state map.

Gerco van Heerdt, Matteo Sammartino, and Alexandra Silva 7

property stating that for all s
1

, s
2

œ S such that ›(s
1

) = ›(s
2

) we must have L(s
1

) = L(s
2

).
The Lı algorithm ensures this by having Á œ E, using that L(s) = ›(s)(Á) for any s œ S.

4 A General Correctness Theorem

In this section we work towards a general correctness theorem. We then show how it applies
to the ID algorithm, to the algorithm by Arbib and Zeiger and to Lı.

S T

H P

‡

e fi
„

m

S H

T P

e

‡ m
Â

fi

(3)

The key observation for the correctness theorem
is the following. Let w = (S ‡≠æ T, T

fi≠æ P ) be
a wrapper with minimization (S e≠æ H, H

m≠æ P ).
If ‡ œ E , then the factorization system gives us a
unique diagonal „ in the left square of (3), which by (the dual of) Proposition ?? satisfies
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f -consistent. The proof for the other
part is analogous. Using Lemma 11 we
see that ◊f indeed exists. Because F‡
is epic and m monic, it su�ces to show
m¶„¶f ¶F‡ = m¶◊f ¶F„¶F‡, which
is done on the right. (The definition of
◊f can be found in the proof of Proposition 9.) J

I Corollary 13. If ‡ œ E and fi œ M, then „ as given in (3) is an F -algebra isomorphism
(T, f) æ (H, ◊f ).

Now we enrich F -algebras with initial and final states, obtaining a notion of automaton in a
category. Then we give the full correctness theorem for automata. We fix objects I and Y in
C, which will serve as initial state selector and output of the automaton, respectively.
I Definition 14 (Automaton). An automaton in C is an object Q FQ

Q

I Y
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outQinitQ

of C equipped with an initial state map initQ : I æ Q, an output
map outQ : Q æ Y , and dynamics ”Q : FQ æ Q. An input system
is an automaton without an output map; an output system is an
automaton without an initial state map.

Target minimal automaton

Hypothesis automaton

Gerco van Heerdt, Matteo Sammartino, and Alexandra Silva 7

property stating that for all s
1

, s
2

œ S such that ›(s
1

) = ›(s
2

) we must have L(s
1

) = L(s
2

).
The Lı algorithm ensures this by having Á œ E, using that L(s) = ›(s)(Á) for any s œ S.
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fi≠æ P ) be
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If ‡ œ E , then the factorization system gives us a
unique diagonal „ in the left square of (3), which by (the dual of) Proposition ?? satisfies
„ œ E . Similarly, if fi œ M, we have Â in the right square of (3), with Â œ M. Composing the
two diagrams and using again the diagonal property, one sees that „ and Â must be mutually
inverse. We can conclude that H and T are isomorphic. Now, if w is a wrapper produced
by a learning algorithm and T is the state space of the target minimal automaton, as in
Example 2, our reasoning hints at a correctness criterion: ‡ œ E and fi œ M upon termination
ensure that H is (isomorphic to) T . Of course, the criterion will have to guarantee that the
automata, not just the state spaces, are isomorphic.

We first show that the argument above lifts to F -algebras f : FT æ T , for an arbitrary
endofunctor F : C æ C preserving E .

I Lemma 11. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E, then w is f -closed; if
fi œ M, then w is f-consistent.

Proof. If ‡ œ E , then let „ be as in (3) and define closef = „ ¶ f ¶ F‡; if fi œ M, then let Â
be as in (3) and define consf = fi ¶ f ¶ FÂ. J

I Proposition 12. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E and w is f-
consistent, then „ as given in (3) is an F -algebra homomorphism (T, f) æ (H, ◊f ); if fi œ M
and w is f-closed, then Â as given in (3) is an F -algebra homomorphism (H, ◊f ) æ (T, f).
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f -consistent. The proof for the other
part is analogous. Using Lemma 11 we
see that ◊f indeed exists. Because F‡
is epic and m monic, it su�ces to show
m¶„¶f ¶F‡ = m¶◊f ¶F„¶F‡, which
is done on the right. (The definition of
◊f can be found in the proof of Proposition 9.) J

I Corollary 13. If ‡ œ E and fi œ M, then „ as given in (3) is an F -algebra isomorphism
(T, f) æ (H, ◊f ).

Now we enrich F -algebras with initial and final states, obtaining a notion of automaton in a
category. Then we give the full correctness theorem for automata. We fix objects I and Y in
C, which will serve as initial state selector and output of the automaton, respectively.
I Definition 14 (Automaton). An automaton in C is an object Q FH

H

I Y
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outHinitH

of C equipped with an initial state map initQ : I æ Q, an output
map outQ : Q æ Y , and dynamics ”Q : FQ æ Q. An input system
is an automaton without an output map; an output system is an
automaton without an initial state map.
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◊f can be found in the proof of Proposition 9.) J
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(T, f) æ (H, ◊f ).

Now we enrich F -algebras with initial and final states, obtaining a notion of automaton in a
category. Then we give the full correctness theorem for automata. We fix objects I and Y in
C, which will serve as initial state selector and output of the automaton, respectively.
I Definition 14 (Automaton). An automaton in C is an object Q FQ

Q

I Y

”Q

outQinitQ

of C equipped with an initial state map initQ : I æ Q, an output
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C, which will serve as initial state selector and output of the automaton, respectively.
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4 A General Correctness Theorem

In this section we work towards a general correctness theorem. We then show how it applies
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ensure that H is (isomorphic to) T . Of course, the criterion will have to guarantee that the
automata, not just the state spaces, are isomorphic.

We first show that the argument above lifts to F -algebras f : FT æ T , for an arbitrary
endofunctor F : C æ C preserving E .

I Lemma 11. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E, then w is f -closed; if
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